MARK-3 ${ }^{\circledR}$
 185cc Cylinder Cast Iron Sleeve Refurbishing

TECH-NOTE

Overview

This tech-note will outline the procedures for the refurbishing of the MARK-3 cast iron sleeve cylinder.

Figure 1: Cast iron sleeve cylinder

TECH-NOTE

Oversizing

A standard size MARK-3 cast iron sleeve cylinder can be oversized and fitted with an oversize piston. Follow these steps to oversize a cast iron sleeve cylinder:

1. Inspect the cylinder for damage. Discard if more than one cooling fin is broken or if the cylinder base is warped; the cylinder base can be faced one time to a maximum of 0.1 mm [. 004 in$]$.
2. Bore the cylinder to $62.45-62.46 \mathrm{~mm}[2.4587-2.4591 \mathrm{in}]$. Ensure that the boring is done perpendicularly to the cylinder base.
3. Using a rotary file, chamfer the sharp edges of each port to an angle of 10° and width of 0.5 mm [. 020 in$]$.
4. Hone the cylinder to $62.50-62.52 \mathrm{~mm}$ [2.4606-2.4614 in] with a 45° cross-hatch. Surface roughness: 1 to 2 microns [39 to 79 micro-inches]. For optimal performance:

- A 62.44 mm piston (red paint mark) will require a cylinder honing to 62.50 mm .
- A 62.45 mm piston (green paint mark) will require a cylinder honing from $62.51-62.52 \mathrm{~mm}$.

5. Inspect cylinder:

- Measure final bore: $62.50-62.52 \mathrm{~mm}$ [2.4606-2.4614 in].
- Measure perpendicularity between bore and cylinder base. Maximum allowable: $0.05 \mathrm{~mm}[.002 \mathrm{in}]$.

6. Oil cylinder sleeve with 15 W 40 engine oil to prevent corrosion and bag. Store in cool and dry place.

Re-sleeving

An oversized cylinder can be re-sleeved, machined and honed to the standard size. Follow these steps to re-sleeve a cylinder:

1. Using a rotary file, chamfer the sharp edges on the outside of the new sleeve on each port (see Figure 2). This will prevent scuffing on the cylinder casting when inserting the new sleeve.

Figure 2: New sleeve - sharp edges

Figure 3: Old cylinder in oven at $220^{\circ} \mathrm{C}$; sleeve will fall down by own weight

TECH-NOTE

2. Inspect the cylinder for damage. Discard if more than one cooling fin is broken or if the cylinder base is warped; the cylinder base can be faced one time to a maximum of $0.1 \mathrm{~mm}[.004 \mathrm{in}]$.
3. Machine old cylinder (sleeve) to a diameter $68 \mathrm{~mm}[2.677 \mathrm{in}]$ and cut bottom of sleeve off in lathe. Remove all burrs. This will reduce tension between the sleeve and the cylinder casting in order to avoid seizure of the cylinder bore when removing the old sleeve.
4. Place the cylinder with old sleeve in an oven upside down (see Figure 3). Heat cylinder to a maximum of $220^{\circ} \mathrm{C}$ [428 ${ }^{\circ} \mathrm{F}$].
5. With the cylinder at a maximum of $220^{\circ} \mathrm{C}$ [$428^{\circ} \mathrm{F}$], the old sleeve will fall out by its own weight. Light pressure may be required to remove sleeve.
6. Check cylinder casting bore for damage and seizure. Seized / damaged cylinder must not be used anymore; repair is not recommended.
7. With the cylinder still hot, align new sleeve with cylinder. Drop in the sleeve and align ports (do not press). If the cylinder is too cool and the sleeve does not drop in, re-heat the cylinder to $220^{\circ} \mathrm{C}\left[428^{\circ} \mathrm{F}\right]$.
8. Let cylinder cool. Apply and maintain pressure on the top of the sleeve to hold it in place inside the cylinder during cooling. This will prevent the sleeve from moving up during the cooling phase.
9. Machine top of the cylinder sleeve to the overall cylinder height of $94.5+/-0.1 \mathrm{~mm}[3.720+/-.004 \mathrm{in}]$. Ensure that the top and base of the cylinder are parallel within $0.05 \mathrm{~mm}[.002 \mathrm{in}]$. Surface roughness finish on the top of the cylinder: 3.2 microns [126 micro-inches].
10. Bore the cylinder to $61.95-61.96 \mathrm{~mm}$ [2.4390 - 2.4394 in]. Ensure that the boring is done perpendicularly to the cylinder base.
11. Using a rotary file, chamfer the sharp edges of each port to an angle of 10° and width of $0.5 \mathrm{~mm}[.020 \mathrm{in}]$.
12. Hone the cylinder to $62.00-62.02 \mathrm{~mm}$ [$2.4409-2.4417 \mathrm{in}$] with a 45° cross-hatch. Surface roughness: 1 to 2 microns [39 to 79 micro-inches]. For optimal performance:

- A 61.94 mm piston (red paint mark) will require a cylinder honing to 62.00 mm .
- A 61.95 mm piston (green paint mark) will require a cylinder honing from $62.01-62.02 \mathrm{~mm}$.

13. Inspect cylinder:

- Measure final bore: $62.00-62.02 \mathrm{~mm}[2.4409-2.4417 \mathrm{in}]$.
- Measure perpendicularity between bore and cylinder base. Maximum allowable: $0.05 \mathrm{~mm}[.002 \mathrm{in}]$.
- Measure parallelism between top and base of cylinder. Maximum allowable: 0.05 mm [. 002 in$]$.
- Measure the height: $94.4-94.6 \mathrm{~mm}[3.717-3.724 \mathrm{in}]$.

14. Oil cylinder sleeve with 15 W 40 engine oil to prevent corrosion and bag. Store in cool and dry place.

Cylinder size	Bore	Honing	Cylinder height	Piston \& cylinder	Cylinder size
Standard size	$\begin{gathered} 61.95-61.96 \mathrm{~mm} \\ {[2.4390-2.4394 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 62.00-62.02 \mathrm{~mm} \\ {[2.4409-2.4417 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 94.4-94.6 \mathrm{~mm} \\ {[3.717-3.724 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 0.06-0.08 \mathrm{~mm} \\ {[.0024-.0031 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 61.94 \mathrm{~mm} \text { (red) } \\ 61.95 \mathrm{~mm} \text { (green) } \end{gathered}$
Oversize	$\begin{gathered} 62.45-62.46 \mathrm{~mm} \\ {[2.4587-2.4591 \mathrm{in}]} \end{gathered}$	$\begin{gathered} 62.50-62.52 \mathrm{~mm} \\ {[2.4606-2.4614 \mathrm{in}]} \end{gathered}$			62.44 mm (red) 62.45 mm (green)

Figure 4: Summary table of key measurements

All information contained in this document including drawings is proprietary to WATERAX and may not be copied, reproduced or used in whole or in part without our prior written permission. The information in this document is subject to change without notice. Model displayed with multiple options.

Weight and dimensions are approximated and may vary depending on options.

> WATERAX INC.
> 6635 Henri-Bourassa W.
> Montreal, QC H4R 1E1
> T 514 637-1818
> F $514637-3985$
> TF $1855616-1818$
> info@waterax.com

waterax.com

To help you stay \#ReadyForWildfires, we've made a few changes, placing 100% of our focus on manufacturing our core products, portable fire pumps. To do so, we've established a network of trusted supply and distribution partners that can help us provide WATERAX pumps quickly in addition to water-handling equipment and accessories.

For immediate assistance when it comes to pumps and water-handling accessories, please contact your local dealer.

For genuine spare parts, visit our online store.

Copyright © 2015 WATERAX Inc.
Publication Number: 701260, Rev. 1 All rights reserved. Printed in Canada.

